Sylentis Reports Positive Phase II Results With SYL1001 in Treating Ocular Pain Related to Dry Eye Syndrome

MADRID, March 14, 2016 /PRNewswire/ --

Sylentis, a pharmaceutical company in the PharmaMar Group (MSE:PHM) and a pioneer in the research and development of new drugs based on gene silencing (interference RNA, RNAi), has presented the results of two Phase II dose-finding and efficacy assessment clinical trials (SYL1001_II and SYL1001_III) with the investigational medicinal product SYL1001 for treating ocular discomfort related to dry eye syndrome.

(Logo: )

These randomised parallel group, double-masked and placebo controlled Phase II trials took place at 8 centres in two European countries: Spain and Estonia. A total of 127 patients with ocular pain related to dry eye syndrome took part in the trials, which assessed safety and efficacy of four doses of SYL1001 (0.375%, 0.75%, 1.125% and 2.25%) against placebo following 10 days of once-per-day administration in the form of eye drops.

The results revealed that 1.125% was an optimal dose which achieved the best primary and secondary endpoints, reducing not only ocular pain but also conjunctival hyperaemia related to dry eye syndrome.

The two trials also confirmed a favourable safety and tolerance profile of SYL1001, previously observed in Phase I trial, with no differences in the percentage of adverse events between the assessed doses of SYL1001 and placebo group.

"These positive results support continuing clinical development of SYL1001. Sylentis is currently designing the Phase III clinical program which it will be validated with the relevant regulatory authorities," said Dr Ana Isabel Jimenez, COO of Sylentis.

The results and additional analysis of these clinical trials will be presented at the ARVO conference in May 2016.

About SYL1001  

SYL1001 is a drug based on RNAi that is administered as preservative-free eye drops; it selectively inhibits production of the TRPV1 receptor. These receptors are ion channels that mediate the transmission of ocular pain. SYL1001 is a small synthetic double-stranded RNA oligonucleotide (siRNA) with a novel and highly selective mechanism of action. Non-clinical studies conducted by Sylentis with SYL1001 have demonstrated it has high ability to inhibit this specific target and block the perception of ocular pain in animals [i].

SYL1001 is a product undergoing development for the treatment or prevention of ocular pain related to with dry eye syndrome, and has potential to be developed for other pathologies that cause ocular pain (corneal lesions, refractive surgery, etc.)[ii],[iii], [iv].

About RNA interference (RNAi) 

RNA interference (RNAi) is a natural cellular process that regulates the expression of certain genes, providing a role in innate defense and development in animal and plants. This process is used to specifically silence genetic transcripts that encode protein-causing diseases. The therapeutic application of targeted siRNAs is booming given the specificity of gene silencing for a particular protein in a given tissue and the lack of side effects. This new approach to drug discovery is a promising technology that is rapidly moving in the translational research space[v].

About Sylentis 

Sylentis, a company of PharmaMar (MSE:PHM), is a biotechnology company fully owned that develops innovative therapies harnessing the technology of post-transcriptional gene silencing or RNA interference (RNAi). Sylentis has developed an approach to efficiently design RNAi-based therapeutics that can be used to silence numerous disease-causing genes. We currently have a robust therapeutic program in ophthalmology[vi] with two candidates under development in Phase II studies for glaucoma (bamosiran) and ocular pain (SYL1001) [ii],[iii],[iv]. Sylentis is also developing new products for the treatment of several eye diseases such as ocular allergies and retina diseases. To know more about us, please visit us at


i. Martinez-Garcia C, Martinez T, Paneda C, Gallego P, Jimenez AI, Merayo J. Differential expression and localization of transient receptor potential vanilloid 1 in rabbit and human eyes. Histol Histopathol, 2013, 28(11):1507-16.

ii. Paneda C, Gonzalez V, Martinez T, Ruz V, Vargas B and Jimenez AI. RNAi based therapies for ocular conditions. In Proceedings of the 11th ISOPT, 2014, 25-30, Medimond, Bologna, Italy.

iii. Martinez T, Jimenez AI, Paneda, C. Short-interference RNAs: becoming medicines. EXCLI Journal, 2015;14:714-46.

iv. Martinez T, Gonzalez MV, Vargas B, Jimenez AI, Paneda C. Preclinical Development of RNAi-Inducing Oligonucleotide Therapeutics for Eye Diseases. In RNA interference. ISBN: 978-953-51-4614-8. Ed. Intech. 2015.

v. The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf, 2007. 5(2): p. 75-92.

vi. Moreno-Montanes J, Sadaba B, Ruz V, Gomez-Guiu A, Zarranz J, Gonzalez MV, Paneda C, Jimenez AI. Phase I Clinical Trial of SYL040012, a Small Interfering RNA Targeting beta-Adrenergic Receptor 2, for Lowering Intraocular Pressure. Mol Ther. 2014, 22(1) :226-32.

Media Inquiries:

Paula Fdez. Alarcon - Media Relations Manager (+34-638-79-62-15)

Investor Relations:

Telephone number: +34-914444500 or visit and



PR Newswire

Dit persbericht is via ANP Pers Support naar internationale (vak en online) media gestuurd. Heb je nieuws voor buitenlandse journalisten? Bekijk dan onze mogelijkheden of neem contact met ons op.

Verstuur nu éénmalig een persbericht

Verstuur persberichten en beeldmateriaal naar redacties in binnen- en buitenland. Via het ANP-net, het internationale medianetwerk van PR Newswire of met een perslijst op maat.

Direct persbericht versturen